

Welcome to gRPCAlchemy’s documentation!

Contents:

	gRPCAlchemy
	Installation

	Example

	Features

	TODO

	Installation
	Stable release

	From sources

	Usage
	Defining our Message

	Defining our gRPC Method

	Using Blueprint to Build Your Large Application

	Configuration

	Middleware

	grpcalchemy
	grpcalchemy package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.7.*(2021-03-20)

	0.6.*(2020-10-27)

	0.5.0(2020-04-27)

	0.4.0(2019-09-24)

	0.3.0(2019-08-19)

	0.2.7-10(2019-04-16)

	0.2.5-6(2019-03-06)

	0.2.4(2019-03-01)

	0.2.2-3 (2019-02-26)

	0.2.1 (2019-02-14)

	0.2.0 (2019-01-30)

	0.1.6 (2019-01-21)

	0.1.5 (2018-12-14)

	0.1.4 (2018-12-11)

Indices and tables

	Index

	Module Index

	Search Page

gRPCAlchemy

[image: _images/grpcalchemy.svg]
 [https://pypi.python.org/pypi/grpcalchemy][image: _images/badge.svg]
 [https://github.com/GuangTianLi/grpcalchemy/actions][image: Documentation Status]
 [https://grpcalchemy.readthedocs.io/en/latest/?badge=latest][image: _images/grpcalchemy1.svg]
 [https://pypi.org/project/grpcalchemy/][image: _images/badge1.svg]
 [https://codecov.io/gh/GuangTianLi/grpcalchemy]The Python micro framework for building gPRC application based on official gRPC [https://github.com/grpc/grpc] project.

	Free software: MIT license

	Documentation: https://grpcalchemy.readthedocs.io.

Installation

$ pipenv install grpcalchemy
✨🍰✨

Only Python 3.6+ is supported.

Example

Server

from grpcalchemy.orm import Message, StringField
from grpcalchemy import Server, Context, grpcmethod

class HelloMessage(Message):
 text: str

class HelloService(Server):
 @grpcmethod
 def Hello(self, request: HelloMessage, context: Context) -> HelloMessage:
 return HelloMessage(text=f'Hello {request.text}')

if __name__ == '__main__':
 HelloService.run()

Then Using gRPC channel to connect the server:

from grpc import insecure_channel

from protos.helloservice_pb2_grpc import HelloServiceStub
from protos.hellomessage_pb2 import HelloMessage

with insecure_channel("localhost:50051") as channel:
 response = HelloServiceStub(channel).Hello(
 HelloMessage(text="world")
)

Features

	gPRC Service Support

	
	gRPC Message Support

	
	Scalar Value Types

	Message Types

	Repeated Field

	Maps

	Define Message With Type Hint

	Middleware

	App Context Manger

	Error Handler Support

	Streaming Method Support

	gRPC-Health Checking and Reflection Support (Alpha)

	Multiple Processor Support

TODO

	Test Client Support

	Async Server Support

Installation

Stable release

To install gRPCAlchemy, run this command in your terminal:

$ pipenv install grpcalchemy
✨🍰✨

This is the preferred method to install gRPCAlchemy, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for gRPCAlchemy can be downloaded from the Github repo [https://github.com/GuangTianLi/grpcalchemy].

You can either clone the public repository:

$ git clone git://github.com/GuangTianLi/grpcalchemy

Or download the tarball [https://github.com/GuangTianLi/grpcalchemy/tarball/master]:

$ curl -OL https://github.com/GuangTianLi/grpcalchemy/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Or using pipenv install straightly:

$ pipenv install -e git+https://github.com/GuangTianLi/grpcalchemy#egg=grpcalchemy

Usage

To use gRPCAlchemy in a project:

from grpcalchemy.orm import Message
from grpcalchemy import Server, Context, grpcmethod

class HelloMessage(Message):
 __filename__ = 'hello'
 text: str

class HelloService(Server):
 @grpcmethod
 def Hello(self, request: HelloMessage, context: Context) -> HelloMessage:
 return HelloMessage(text=f'Hello {request.text}')

if __name__ == '__main__':
 HelloService.run()

Defining our Message

Any message which is used in RPC method must have a explicit schema. We can
use py files generated by proto files by the grpc_tools straightly. However
defining the schemas by our ORM can help to iron out bugs involving incorrect
types or missing fields, and also allow us to define utility methods on our message
in the same way that traditional ORMs do.

In our Tutorial Application we need to send several different types of
message. We will need to have a collection of users, so that we may
link posts to an individual. We also need to send our different types of
posts (eg: text, image and link) in the RPC method. To aid navigation of our
Tutorial Application, posts may have tags associated with them, so that the list of
posts shown to the user may be limited to posts that have been assigned a
specific tag. Finally, it would be nice if comments could be added to
posts. We’ll start with users, as the other document models are slightly
more involved.

Users

Just as if we were using a RPC Message with an ORM, we need to define
which fields a User may have, and what types of data they might have:

from grpcalchemy.orm import Message
class User(Message):
 email: str
 first_name: str
 last_name: str

Posts, Comments and Tags

Now we’ll think about how to define the rest of the information. To associate the comments
with individual posts, We’d also need a link message to provide the
many-to-many relationship between posts and tags.

Posts

We can think of Post as a base class, and TextPost, ImagePost and
LinkPost as subclasses of Post.

from grpcalchemy.orm import Message
class Post(Message):
 title: str
 author: str

class TextPost(Post):
 content: str

class ImagePost(Post):
 image_path: str

class LinkPost(Post):
 link_url: str

We are storing a reference to the author of the posts using a
ReferenceField object. These are equal to use other
message types in RPC message.

Tags

Now that we have our Post models figured out, how will we attach tags to them?
RPC message allows us to define lists of items natively. So, for both
efficiency and simplicity’s sake, we’ll define the tags as strings directly
within the post. Let’s take a look at the code of our modified Post class:

from typing import List
from grpcalchemy.orm import Message, Repeated
class Post(Message):
 title: str
 author: User
 tags: Repeated[str]

The ListField object that is used to define a Post’s tags
takes a field object as its first argument — this means that you can have
lists of any type of field (including lists).

Note

We don’t need to modify the specialized post types as they all
inherit from Post.

Comments

A comment is typically associated with one post.utility methods,
in exactly the same way we do with regular documents:

from grpcalchemy.orm import Message
class Comment(Message):
 content: str
 name: str

We can then define a list of comment documents in our post message:

from typing import List
from grpcalchemy.orm import Message, Repeated
class Post(Message):
 title: str
 author: User
 tags: Repeated[str]
 comments: Repeated[Comment]

Defining our gRPC Method

grpcmethod is a decorator indicating gRPC methods.

The valid gRPC Method must be with explicit type hint [https://www.python.org/dev/peps/pep-0484/#type-definition-syntax]
to define the type of request and return value.

Using Iterator to define Stream gRPC Method:

from typing import Iterator

class HelloService(Server):

 @grpcmethod
 def UnaryUnary(self, request: HelloMessage, context: Context) -> HelloMessage:
 return HelloMessage(text=f'Hello {request.text}')

 @grpcmethod
 def UnaryStream(self, request: HelloMessage, context: Context) -> Iterator[HelloMessage]:
 yield HelloMessage(text=f'Hello {request.text}')

 @grpcmethod
 def StreamUnary(self, request: Iterator[HelloMessage], context: Context) -> HelloMessage:
 for r in request:
 pass
 return HelloMessage(text=f'Hello {r.text}')

 @grpcmethod
 def StreamStream(self, request: Iterator[HelloMessage], context: Context) -> Iterator[HelloMessage]:
 for r in request:
 yield HelloMessage(text=f'Hello {r.text}')

The above code is equal to an RPC service with a method:

syntax = "proto3";

service HelloService {
 rpc StreamStream (stream HelloMessage) returns (stream HelloMessage) {}

 rpc StreamUnary (stream HelloMessage) returns (HelloMessage) {}

 rpc UnaryStream (HelloMessage) returns (stream HelloMessage) {}

 rpc UnaryUnary (HelloMessage) returns (HelloMessage) {}
}

Using Blueprint to Build Your Large Application

gRPCAlchemy uses a concept of blueprints for making gRPC services and
supporting common patterns within an application or across applications.
Blueprint can greatly simplify how large applications work.

from typing import List, Type
from grpcalchemy.orm import Message
from grpcalchemy import Server, Context, Blueprint

class MyService(Server):
 @classmethod
 def get_blueprints(cls) -> List[Type[Blueprint]]:
 return [HelloService]

class HelloMessage(Message):
 __filename__ = 'hello'
 text: str

class HelloService(Blueprint):
 @grpcmethod
 def Hello(self, request: HelloMessage, context: Context) -> HelloMessage:
 return HelloMessage(text=f'Hello {request.text}')

if __name__ == '__main__':
 MyService.run()

Configuration

You can define your custom config by inherit from DefaultConfig which defined
a list of configuration available in gRPCAlchemy and their default values.

Note

DefaultConfig is defined by configalchemy - https://configalchemy.readthedocs.io

from grpcalchemy import DefaultConfig

from hello import HelloService

class MyConfig(DefaultConfig):
 ...

config = MyConfig()

HelloService.run(config=config)

Middleware

Middleware is a framework of hooks into gRPCAlchemy’s request/response processing.

Costume middleware can implement by overriding Blueprint.before_request, Blueprint.after_request,
Server.process_request and Server.process_response.

grpcalchemy

	grpcalchemy package
	grpcalchemy.server module

	grpcalchemy.blueprint module

	grpcalchemy.config module

grpcalchemy package

grpcalchemy.server module

grpcalchemy.blueprint module

grpcalchemy.config module

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/GuangTianLi/grpcalchemy/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

gRPCAlchemy could always use more documentation, whether as part of the
official gRPCAlchemy docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/GuangTianLi/grpcalchemy/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up grpcalchemy for local development.

	Fork the grpcalchemy repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/grpcalchemy.git

	Install your local copy into a virtualenv. Assuming you have Pipenv installed, this is how you set up your fork for local development:

$ cd grpcalchemy/
$ make init
$ pipenv shell

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass lint and the
tests, including testing other Python versions:

$ make lint
$ make test

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6+. Check
https://travis-ci.org/GuangTianLi/grpcalchemy/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ make test

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	GuangTian Li <guangtian_li@qq.com>

Contributors

None yet. Why not be the first?

History

0.7.*(2021-03-20)

	Improve initialize function of message

	Remove default feature in message

	Refactor composite message Type

	Support gRPC with xDS

	Add PROTO_AUTO_GENERATED setting to make runtime proto generation optional

0.6.*(2020-10-27)

	fix [#36] compatibility in windows

	fix [#34] compatibility in windows

	gRPC-Health Checking and Reflection Support (Alpha)

	Multiple Processor Support

0.5.0(2020-04-27)

	Support Streaming Method

	Deprecate request parameter in app context and handle exception

0.4.0(2019-09-24)

	Support related directory path to generate protocol buffer files

	Enable use type hint to define message

	Add error handle to handle Exception

	Add get_blueprints to get blueprints need to register

0.3.0(2019-08-19)

https://github.com/GuangTianLi/grpcalchemy/projects/1

0.2.7-10(2019-04-16)

	Support SSL

	Improve Implement of Server with grpc.server

	Support YAML file in Config Module

	Improve Config Module

	Add context in current rpc

0.2.5-6(2019-03-06)

	Implement Rpc Context

	Improve Config Module

0.2.4(2019-03-01)

	Implement Globals Variable

	Implement APP Context

0.2.2-3 (2019-02-26)

	Improve Config module

	Improve rpc_call_wrap

0.2.1 (2019-02-14)

	Implement Own gRPC Server

	Implement gRPC Server Test Client

0.2.0 (2019-01-30)

	Change gRPCAlchemy Server register to register_blueprint

	Make gRPCAlchemy Server inherit from Blueprint

	Support Json Format

	Support Inheritance Message

0.1.6 (2019-01-21)

	Various bug-fixes

	Improve tests

	Change Client API

	Add PreProcess And PostProcess

	Import Config Object

	Add Event Listener

	Change Field Object Into Descriptor

0.1.5 (2018-12-14)

	Various bug-fixes

	Improve tests

	Add client

0.1.4 (2018-12-11)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to gRPCAlchemy’s documentation!

 		
 gRPCAlchemy

 		
 Installation

 		
 Example

 		
 Server

 		
 Features

 		
 TODO

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Defining our Message

 		
 Users

 		
 Posts, Comments and Tags

 		
 Defining our gRPC Method

 		
 Using Blueprint to Build Your Large Application

 		
 Configuration

 		
 Middleware

 		
 grpcalchemy

 		
 grpcalchemy package

 		
 grpcalchemy.server module

 		
 grpcalchemy.blueprint module

 		
 grpcalchemy.config module

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.7.*(2021-03-20)

 		
 0.6.*(2020-10-27)

 		
 0.5.0(2020-04-27)

 		
 0.4.0(2019-09-24)

 		
 0.3.0(2019-08-19)

 		
 0.2.7-10(2019-04-16)

 		
 0.2.5-6(2019-03-06)

 		
 0.2.4(2019-03-01)

 		
 0.2.2-3 (2019-02-26)

 		
 0.2.1 (2019-02-14)

 		
 0.2.0 (2019-01-30)

 		
 0.1.6 (2019-01-21)

 		
 0.1.5 (2018-12-14)

 		
 0.1.4 (2018-12-11)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

